Given a strings1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation ofs1="great"
:
great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node"gr"
and swap its two children, it produces a scrambled string"rgeat"
.
rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
We say that"rgeat"
is a scrambled string of"great"
.
Similarly, if we continue to swap the children of nodes"eat"
and"at"
, it produces a scrambled string"rgtae"
.
rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
We say that"rgtae"
is a scrambled string of"great"
.
Given two stringss1ands2of the same length, determine ifs2is a scrambled string ofs1.
tag: DFS, divide and conquer, recursion
挺好的divide and conquer
class Solution {
public boolean isScramble(String s1, String s2) {
if (s1.equals(s2)) return true;
if (s1.length() != s2.length()) return false;
int[] hash = new int[26];
for (int i = 0; i < s1.length(); i++){
hash[s1.charAt(i) - 'a']++;
hash[s2.charAt(i) - 'a']--;
}
for (int i = 0; i < 26; i++){
if (hash[i] != 0) return false;
}
for (int i = 1; i < s1.length(); i++){
if (isScramble(s1.substring(0, i), s2.substring(0, i)) && isScramble(s1.substring(i), s2.substring(i))) return true;
if (isScramble(s1.substring(0, i), s2.substring(s2.length() - i)) && isScramble(s1.substring(i), s2.substring(0, s2.length() - i))) return true;
}
return false;
}
}