Given a directed, acyclic graph ofN
nodes. Find all possible paths from node0
to nodeN-1
, and return them in any order.
The graph is given as follows: the nodes are 0, 1, ..., graph.length - 1. graph[i] is a list of all nodes j for which the edge (i, j) exists.
Example:
Input:
[[1,2], [3], [3], []]
Output:
[[0,1,3],[0,2,3]]
Explanation:
The graph looks like this:
0---
>
1
| |
v v
2---
>
3
There are two paths: 0 -
>
1 -
>
3 and 0 -
>
2 -
>
3.
Note:
[2, 15]
.class Solution {
public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
List<List<Integer>> ans = new ArrayList<>();
if (graph == null || graph.length == 0) return ans;
int len = graph.length;
Set<Integer> visited = new HashSet<>();
List<Integer> path = new ArrayList<>();
path.add(0);
visited.add(0);
dfs(len, 0, visited, graph, path, ans);
return ans;
}
private void dfs(int len, int cur, Set<Integer> visited, int[][] graph, List<Integer> path, List<List<Integer>> ans){
if (cur == len - 1){
ans.add(new ArrayList<>(path));
return;
}
for (int nei : graph[cur]){
if (visited.contains(nei)) continue;
visited.add(nei);
path.add(nei);
dfs(len, nei, visited, graph, path, ans);
visited.remove(nei);
path.remove(path.size() - 1);
}
}
}