Given an array ofnintegers wheren> 1,nums
, return an arrayoutput
such thatoutput[i]
is equal to the product of all the elements ofnums
exceptnums[i]
.
Solve itwithout divisionand in O(n).
For example, given[1,2,3,4]
, return[24,12,8,6]
.
Follow up:
Could you solve it with constant space complexity? (Note: The output arraydoes notcount as extra space for the purpose of space complexity analysis.)
class Solution {
public int[] productExceptSelf(int[] nums) {
if (nums == null || nums.length < 2) return new int[0];
int[] ans = new int[nums.length];
int[] left = new int[nums.length];
int[] right = new int[nums.length];
left[0] = nums[0];
right[nums.length - 1] = nums[nums.length - 1];
for (int i = 1; i < nums.length; i++){
left[i] = left[i - 1] * nums[i];
}
for (int j = nums.length - 2; j >= 0; j--){
right[j] = right[j + 1] * nums[j];
}
for (int k = 0; k < nums.length; k++){
if (k == 0){
ans[k] = right[k + 1];
}
else if (k == nums.length - 1){
ans[k] = left[k - 1];
}
else{
ans[k] = left[k - 1] * right[k + 1];
}
}
return ans;
}
}
without extra space
public class Solution {
public int[] productExceptSelf(int[] nums) {
int n = nums.length;
int[] res = new int[n];
res[0] = 1;
for (int i = 1; i < n; i++) {
res[i] = res[i - 1] * nums[i - 1];
}
int right = 1;
for (int i = n - 1; i >= 0; i--) {
res[i] *= right;
right *= nums[i];
}
return res;
}